Mining Implicit Patterns of Customer Purchasing Behavior Based on the Consideration of Rfm Model
نویسندگان
چکیده
Association rules have been developed for years and applied successfully for market basket analysis and cross selling among other business applications. One of the most used approaches in association rules is the Apriori algorithm. However the Apriori algorithm, has long known for its weaknesses that generate enormous amount of rules and alreadyknown facts. In this study, we integrate the RFM attributes with the classical association rule mining, Apriori. Based on RFM model, two indicators, RF score and Sale ratio, are used as measure of interestingness. We propose two algorithms, DWRF and DWRFE, to mine for implicit pattern. In our experimental evaluation, the performance of Apriori, DWRF and DWRFE are compared. The result of our algorithms offers an effective measurement of interesting patterns. Moreover, the DWRF algorithm that uses the RF score as a measure of interestingness seems to be able to promptly reflect the fast-changing customer’s purchase patterns.
منابع مشابه
Customer behavior mining based on RFM model to improve the customer relationship management
Companies’ managers are very enthusiastic to extract the hidden and valuable knowledge from their organization data. Data mining is a new and well-known technique, which can be implemented on customers data and discover the hidden knowledge and information from customers' behaviors. Organizations use data mining to improve their customer relationship management processes. In this paper R, F, an...
متن کاملNew Approach for Customer Clustering by Integrating the LRFM Model and Fuzzy Inference System
This study aimed at providing a systematic method to analyze the characteristics of customers’ purchasing behavior in order to improve the performance of customer relationship management system. For this purpose, the improved model of LRFM (including Length, Recency, Frequency, and Monetary indices) was utilized which is now a more common model than the basic RFM model apt for analyzing the cus...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملData Mining Using RFM Analysis
RFM stands for Recency, Frequency and Monetary value. RFM analysis is a marketing technique used for analyzing customer behavior such as how recently a customer has purchased (recency), how often the customer purchases (frequency), and how much the customer spends (monetary). It is a useful method to improve customer segmentation by dividing customers into various groups for future personalizat...
متن کامل